
Game Geometry 
and Physics

rolling out collision and physics code



jeaton.matero.net



André LaMothe



Very first demo made in high 
school, uses intricate pseudo 
2.5d engine with “planes” and 
complete with fight game hit 
box editor.

FriFirst attempt at networking code, first year in college



Uses my first demo’s code without the 3rd dimension



Open Dynamics Engine

Box2d



First real attempt at 2d engine

I was developing this 3d collision 
engine to work with all blocks back in 
2007.





Demo



Problems
● Adjusting reactions indirectly (can fly by swinging mace)
● Ghost collisions with internal edges on tile map
● Projectiles get funky when map gets crowded
● Made hacky wall stick constraint that breaks on moving objects
● Difficult to detect solid areas

edge shapes to fix ghost collisions
hacked prismatic joint to make “wall stick” joint



Back to the Drawing Board!
(But this time armed with the concept of “speculative contacts”)



What are the building blocks of a collision engine?
● Broad Phase

○ Easy, many books and school text books will help you here
○ Does not affect dynamics of simulation in most cases
○ Can be switched out with better system for performance
○ So I use brute force until I get the narrow phase down

● Narrow Phase
○ Usually solved with many pairwise comparisons
○ Very tricky to get right
○ Not much information on how to do this until fairly recently
○ Most energy put into finding decent global solution between all bodies



Important Concepts
● Ray casting
● Separating axis theorem (SAT)/Minkowski difference
● Gilbert–Johnson–Keerthi distance algorithm
● Speculative contacts
● Ghost Collisions
● Polygon skins or outer hulls



Separating Axis Theorem (SAT)

http://www.metanetsoftware.com/2016/n-tutorial-a-collision-detection-and-response



Minkowski Sum & Difference



Gilbert–Johnson–Keerthi Distance Algorithm



Speculative Contacts and Ghost Collisions



Polygon Skins or Outer Hulls



Ray Casting



Anatomy of a Collision Engine



“Distance Query”

Normal, Distance (separation is negative), Manifold



“Sweep”



“Sweep”



Global Solution
● Object priorities used for determining influence over a position
● Contacts sorted by priority and Y-Axis for stacking
● Box “skins” used to prevent falling through platforms
● Positioning and Contact resolution separated to stop ghost collisions



Internal Edges



Main Loop
● Set body displacements to current velocities
● Clip displacements with previous frame contacts to avoid internal edge hits
● Generate contact pairs
● Adjust displacements using speculative contacts and ray casts
● Integrate and move bodies position using displacement
● Generate current frame contacts using distance queries
● Allow user to adjust velocities any way they like before going back to top of 

loop, including using physics joint resolutions



The Difference Between Life and Death!



One Way Platforms, Inclines



Moving Platforms, Pushable Blocks



Wall Climbing, Wall Sliding



Hanging from bars or ceilings



Dynamic Destructible Blocks



Moving Tilemaps



Shields, Fast Projectiles



Dynamic Stacked Objects



Joint Constraints



High School Physics with Euler Integration



Lots of Trial and Error



On With The Demo!



Future Additions
● Inclines (not implemented yet)
● Oriented Bounding Boxes
● More Joints
● Use better language like C++ or C#
● Make version with more shape options
● Figure out what can be done in parallel



Links and References
http://www.metanetsoftware.com/

http://box2d.org/

https://wildbunny.co.uk/

http://bulletphysics.org/wordpress/

https://github.com/mattleibow/jitterphysics

jeaton.matero.net/ ← my personal site!

http://www.cs.cornell.edu/courses/cs4620/2013fa/lectures/03raytracing1.pdf


