
Application Development on the Cloud
Jason Eaton

UM-D Masters Student
2461 Hoover

West Bloomfield MI, 48324
1 (248) 933-1459

eatonj@umich.edu

ABSTRACT
In this paper we will explore the many technology options
application developers have in designing and implementing a
cloud based web application.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Classifications –
functional programming, concurrency, language to language
interfaces, object oriented, data oriented design

General Terms
Performance, Design, Economics, Reliability, Experimentation,
Security, Standardization, Languages, Theory.

1. INTRODUCTION
There are three major categories of cloud computing services,
arranged in a stack. The first layer of the stack is referred to as
Infrastructure-as-a-Service (IaaS). These services are offered as
physical computing hardware that may be configured by the
users by uploading virtualized machines to their systems. The
next layer is called Platform-as-a-Service (PaaS). There are
various platforms available that developers may develop web
applications for and upload them onto some IaaS. The last layer
is provided for software users by the web application developers
and is called Software-as-a-Service (SaaS). This paper will
focus primarily on PaaS options available to web application
developers, and somewhat on the IaaS providers that they may
be deployed on.

2. DATABASES
Every web page and web app at some point needs to store
persistent data. Whether its information about the users, various
informative statistics, or simply static html content.

2.1 Operating System File System
The simplest way to store data is though the operating system
that is serving out the web content's file system. Before the
world wide web was more dynamic, it served out static html
web pages. Since no server side logic was necessary, these html
pages could just sit on the operating system's file system, along
with any static images that were needed to be placed into the
html page. This method is still widely used for multimedia that
needs to be served out from many web servers, since these
assets are usually static. The html content, however, is now
very dynamic and needs to be generated each time a user visits
the page. This means that the operating system can no longer
hold this html file on the file system, and it must be generated

from another source. Servers that generate this html content on
the fly could pull the data needed to generate these pages from
other files on the file system, but more commonly this data is
pulled from a locally or remotely running special piece of
software called a database. These databases allow for a more
consistent performance on retrieval of data. There are several
different file systems, and of those there are various different
settings they can use to tweak performance. Three common
OSes used are Ubuntu Linux, Microsoft Windows Server 2008,
and even Macs may be set up as servers. Ubuntu itself has
several different file systems to choose from on installation that
can impact the performance of your disk reads and writes. Two
common problems with operating system file systems are
fragmentation and file indexing and searching. Fragmentation
can be a big problem, since in order to defrag your hard disks,
your web content must be taken down while it defrags. Usually
OS file systems are not optimized for massive numbers of files,
which can make searches and indexing files difficult when a
folder might have thousands of files. The University of
Michigan ITCS network file system uses nested hash tables on
unique names to make file access more efficient for large
numbers of files for the users. It works by creating a folder for
each letter of the alphabet in a folder, and in each of those
folders, another set of folders of each letter of the alphabet.
Then in those nested folders, each users' folder whose unique
name starts with the two letters of the parent folders would be
inside. This allows for a nested hash of the first two letters of
each unique name. Databases that use special software are
usually stored in the OS file system as large chunks of data, and
store their own indices to the contained data. This allows the
special software to bypass a lot of the OS level file system
implementation. The choice of file system that is running these
databases also has some impact on the performance of data
retrieval.

2.2 Relational Databases
A relational database is a database that conforms to relational
model theory. The software that operates these databases are
called relation database management systems (RDBMS). This
is the predominate choice of database in the industry due to its
ease of use. Data inside of a relational database is accessed
though a special language called the SQL data definition and
query language. This language makes it continent to process
queries from a variety of different languages. These databases
are actually not as efficient as some of the other database
software types, but are much easier to manage. Two legacy
database types that were replaced by RDBMS as computers
became faster and more efficient to run relational databases
were hierarchical databases and network databases. One reason

relational databases tend to be slower is that the indexes used to
retrieve data must be traversed in order to find a specific set of
data. This indirection allows for more flexibility and usability,
but slows down search times. Hierarchical databases use direct
memory addresses of data to traverse data trees, which can give
constant time lookups in many situations. This makes
traversing the database more tricky, as the method of traversal
relies on the structure of the data in the hierarchy. It is
important to know how your data is organized, and how it will
be queried to know what kind of database structure is right for
your data. There were some cases of companies blindly
jumping on the band wagon of relational databases and
converting from hierarchical databases only to find that their
software would grind to a near halt when performing intensive
data operations.[1] Another drawback relational databases face is
called the object-relational impedance mismatch. Most
languages used to access databases are object oriented, so much
work is done to map the relational model to the object model.
In recent times, web applications have been hitting a
performance ceiling when using relational databases, and
companies have been experimenting with various new types of
database models. This issue tends to arise when handling
complex relations in real time. Typically relational databases
would assemble complex relations off line into a temporary set
of data called a "view", but it is only a static snap shot, and can
take hours to assemble.

2.3 Object Oriented Databases
Object Oriented databases were thought to replace relational
databases, but have only found a small niche in the industry.
They were designed to solve some of the issues relational
databases had difficulty with. Probably the most useful aspect
of an object oriented database is that it shares the same data
model as object oriented programming. This fact almost
completely resolves the object-relational impedance mismatch,
and removes the need for the layer that maps relational data to
object data. This can result in much more elegant coding
practices. Another advantage object oriented databases have
over relational ones is that object relations are stored with the
objects themselves. This means no join operation needs to be
made to access objects related to other objects, and these object
relations can be traversed in constant time, instead of the linear
time necessary to perform a join. This is a very significant
advantage for real time applications. This advantage does come
with a price, however, and may be a contributing factor to why
object oriented databases have not replace relational ones. Since
relations are stored with the objects themselves as direct
pointers to other objects, it creates a stronger coupling between
object data and relations. In a relational database these relations
would be stored in a separate table. [2] To understand the
difference between object oriented databases and relational
databases, we can use an analogy of storing a car in a garage.
With a relational database, you would be driving into your
garage, parking, then completely disassembling your car into
pieces until the morning, which you would then completely
reassemble your car before you drove off to work. With an
object oriented database, it is as easy as driving into the garage
and parking it, leaving it completely assembled when you leave
it for the night. This is essentially what must be done with joins
in a relational database, to assemble all of your tables split into
individual parts together into complete units. Whereas this
method is much slower, it is also more flexible when making

more ad hoc queries into your data. Object oriented databases
have more difficulty making queries that do not fit the structure
of your data and relationships stored with that data. Another
type of database that is gaining popularity is the object-
relational database. It is basically a hybrid of object and
relational database types. It is similar to a relational database,
but has a object oriented database model. This allows for
flexibility of a relational database, but also with the impedance
matchup of an object oriented database.

2.4 Mnesia
Mnesia is a special purpose database written specifically to be
used with a language called Erlang. Erlang is a language built
for telecommunications. It was designed to support distributed,
fault-tolerant, soft-real-time, non-stop applications. [3] Since
Erlang strives to be soft-real-time and distributed, it also needs a
way to store persistent data that upholds to those properties.
One way Mnesia achieves a more real-time model is by storing
complete tables in main memory. They can be copied out to
disk, but when they are being worked with the system will not
have to read from the hard disk. They way this database stores
data is much like simply allocating data in main memory on the
heap, and storing a pointer to it. This allows data structures to
be of arbitrary sizes because they can be individually allocated.
For now however, Mnesia databases use 32 bit integers as file
offsets, limiting the size of the database to 4Gb. Although this
direct memory access can speed up data access, large tables
must be stored in a very fragmented way. [4] Mnesia also has its
own query language QLC. A partial SQL query language was
built as a masters project for this database, but has limited
capabilities, and isn't widely used.

2.5 Other NoSQL Databases
Since the world wide web has been moving from supplying
static web pages to supplying fully interactive web applications,
the most widely used SQL database has shown to hit a
performance ceiling. This has caused many companies to invest
in alternative database software. These newly invented
databases are currently being referred to as NoSQL databases.
Some of these databases are actually being built on top of
existing database software. One in particular is called
CouchDB, which is actually built on top of the Erlang Mnesia
database. To get an understanding of why this performance
ceiling has been hit, we can look to a recently devised database
theorem called the CAP theorem.

Figure 1 where databases fall in the CAP theorem. [6]

This theorem states that it is impossible for a computer system
to simultaneously provide all three of these guarantees:
Consistency, Availability, and partition tolerance. Consistency
guarantees that all nodes have the same data at the same time.
Availability guarantees that every request receives a response
about whether it was successful or not. Partition tolerance
guarantees that system continues to operate despite arbitrary
message loss or failure of part of a system. [5] The one guarantee
that a relational database management system fails to deliver on
is partition tolerance. In conditions that require this tolerance an
alternative solution is required. CouchDB was designed to
achieve this partition tolerance guarantee, at the expense of
guaranteeing consistency. [6] One of the largest storage database
out there is the Amazon Simple Storage Service (S3). It is
designed for large volumes of storage and reliability. It has no
query system other than a key/store system that will retrieve a
block of data given a key. Amazon also supplies a smaller
simpler database called Amazon SimpleDB, which does allow
queries. Developers can use this database in conjunction with
S3 by storing keys inside the SimpleDB to reference the chunks
of data in the S3.[7]

2.6 Moving Object Databases
With the advent of mobile devices and locational data,
applications have found the need to index objects that are
constantly in motion. Normal relational databases are not well
equipped to handle this sort of data, so a whole new database
needed to be created to accommodate this need. This database
is called a Moving Object Database (MOD). These databases
are able to run queries on moving objects given various space
and time constraints. They have resorted to using dynamic
attributes, attributes that change dynamically over time without
any update operations.[8]

2.7 XML Databases
Since the internet is contrived of mostly data in some sort of
XML format, a special type of database was created to store
persistent data somewhere other than an operating system's file
structure.

3. SERVER SIDE
In order to serve out web content, servers have to run some sort
of HTTP software to map files from URLs to files on the

server's file system. Originally the function of this software was
to simply relay the file on the server to the client on the other
side. But once internet content became more dynamic, these
servers had to run scripts to generate these files to be served out
on the fly. There are many different scripting languages used to
generate HTML content that usually plug into your HTTP
software. This introduces one extra step in the process, and
allows static web browsers to browse dynamic content even
without any sort of client side scripting.

3.1 C/C++
It is possible to write server side scripts in C/C++ using the
Common Gateway Interface (CGI). CGI is a standard method
for web server software to delegate generation of web pages to
scripts.[9] This allows for the reuse of volumes of existing C/C+
+ code on the server side. However, C/C++ programming takes
a considerable amount of expertise. If programs used to
generate these web pages produce memory leaks or crash, it is
possible for them to bring down the server itself. This is
considerably more likely under high traffic loads. The
advantage of using C/C++ is the level of control you have over
the computer. Using other scripting languages require you to
work completely inside of their framework. C/C++ allows you
to incorporate various optimizations that would be impossible
otherwise.

3.2 PHP: Hypertext Preprocessor
PHP is the most common scripting language used to write
dynamic web content. It is free to use, and finding hosting
services is easy and cheap. The language itself is designed
syntactically to make dynamic strings used to generate content
easy to read and understand. It allow for script commands to be
written right into the HTML code itself, so only dynamic
aspects of the page need to be written out in PHP rather than
HTML. The PHP language is an interpreted language, so it is
easy for the server to take the PHP code inside the HTML file
and execute it. The fact that PHP was specifically designed for
generating HTML may be its weak point. There is no version of
PHP designed to run on any client, or anywhere but the server
itself. This means that using PHP will almost always introduce
one extra language that needs to be managed for any project.
The language is also specifically designed to write programs
that begin once an HTTP request is received, and are completely
finished once the HTTP response is given. Sometimes a
technique used to get around this limitation is long polling,
which simply delays a response until more data is available to
avoid an empty response. Another side effect of this limitation
is that it is impossible to utilize the server's main memory to
store any information between requests. All data must be read
from the disk on every request, which is usually read from a
database of some sort. This means that the speed of most
requests will be driven by the speed of your database. This fact
has lead to the development of the many NOSQL databases we
see today, to reduce the bottleneck of accessing the hard disk
every request. Another technology used to get around this
limitation is having the PHP script have access to a group of
computers that use their main memory as a cache.

3.3 Java Server Pages
Java Server Pages (JSP) are identical to PHP pages except that
the script commands are written in Java rather than PHP. They
share the same program life cycle limitation of PHP, programs

are only active during each request. The technology that works
with Apache to serve out Java dynamic content is called
Tomcat. Tomcat takes compiled Java programs called servlets,
which generate HTML to be served out from the server.
Servlets may be written without Java Server Pages, but JSP
allows for Java code to be written right into the HTML code
itself, which is then compiled into a servlet. This allows for the
separation from presentation and web content. One major
advantage to using Java as the scripting language is allowing the
removal of an entire language from a web project, if Java
applets or a Java based mobile device is used as the client.
Having a homogeneous web structure allows for seamless
communication between nodes of a network. The web giant
Google even went though the trouble of creating the Google
Web Toolkit (GWT), which allows Java programs to be
converted to HTML, CSS and JavaScript so that developers have
one less language to manage in their projects.

3.4 ASP.NET Framework
ASP.NET is similar to Java Server Pages, but has a much more
active connection with the server. The scripting is done with
any dot NET common language runtime (CLR) compatible
language. The server software that delivers these pages is the
Microsoft Internet Information Server (IIS). The ASP.NET
framework is based on a large set of controls. These are special
controls that are rendered with client side HTML, but their logic
is executed on the server side every time the user changes the
controls. This is how ASP.NET pages keep an active connection
with the server. The ASP.NET page editors generate extra
JavaScript and html to accommodate these controls. One
significant drawback of this system is the needed connectivity of
the server. If you have network with low connectivity, where
the user is frequently without a connection, it may confuse the
user when controls are only working infrequently. Another
drawback for the server is the increased traffic induced from
many users frequently changing the controls on their web page.
For example a text box will actually send a request to update the
html for a text box every time the user types a single letter.

3.5 Ruby on Rails
Rails is a framework API that interfaces with the Ruby
programming language. It is a full stack framework, so it cuts
across many of web application tiers. Nearly every web
application needs access to a database, so Rails has database
access built into the API. This abstraction layer allows Rails
programmers to code for a variety of databases without having
to write database specific code. Ruby on Rails attempts to be a
lean way of writing web applications. It was written with a
"convention over configuration" philosophy to reduce code that
must be written. It is also written with a "don't repeat yourself"
philosophy so that information is localized in a single place
which also reduces code size. These philosophies also help
Rails to be more agile with the ability to rapidly prototype web
applications. Another goal for Ruby on Rails was to be
modular. It uses a Model-View-Controller system to view and
interact with web applications. The view is responsible for
generating the final HTML code to be displayed in the browser,
therefore it can be trivial to create multiple views for a single
model that could be displayed for several different targets, such
as a web browser or mobile phone.

3.6 ColdFusion
Currently ColdFusion is a rapid web application development
platform owned by Adobe Systems since 2005. It was invented
in 1995 to make it easier to connect HTML pages to a database.
This platform uses its own markup language called ColdFusion
Markup Language (CFML). This language is similar to JSP,
ASP and PHP except that its syntax more closely resembles
HTML.[10] Since this platform was purchased by Adobe, many
Flash Player compatible features were added to make it easier
for Flash Player applications to communicate with remote
servers via flash remoting. ColdFusion allows for server side
scripts to be written in ActionScript, the same language that
Flash Player uses. This allows for seamless interaction between
the popular Flex framework with server side scripts.

3.7 Erlang
Erlang is a functional programming language that was originally
used to program telephone switches. The erlang programs run
within a virtual machine, making the system very fault tolerant.
Programs can be started, stopped and changed on the fly without
bringing the system down. Each program is considered an actor
that is able to pass messages to any other actor. Every program
runs concurrently, but the only way to have them communicate
is with messages. This restriction prevents the need for locks or
mutexes. The erlang system can even run across nodes in a
cluster of computers and distribute the load of computation.
One recent natural addition to the erlang virtual machine allows
it to utilize multiple cores to run programs across. This virtual
machine also is able to run tens of thousands of programs at
once, which makes it a very nice system for handling large
numbers of concurrent connections. Most web servers use the
operating system's built in threading for handling multiple
connections to the web server. This can easily cause the server
to crash under heavy traffic. Erlang is used in many commercial
web sites for handling real time interactions between users.
Erlang has been used in many message queue implementations
such as Ejabbered and RabbitMQ. [11][12] Facebook's real time
chat uses erlang to process messages. Mochiads uses erlang to
serve out ads to Flash games world wide.

3.8 Node.js
Since HTML5 with JavaScript programming seems to be where
web applications are heading, it is natural that a server side
technology that uses JavaScript as its scripting language would
be created. Node.js is similar to erlang in that it does not use
the operating system's threading system. Unlike erlang,
however, it does not run request concurrently with a virtual
machine. Instead the model is event driven, and the script for
each event is executed completely before the next event is
processed. This allows programmers to ignore multi-threading
problems like dead locks and race conditions. Nodejs also has
functionality that will allow it to scale with multi-processor
computing and clustering. You can start new processes from the
parent process that can be run in parallel. There is also a cluster
module that can be used for load balancing incoming
connections. This functionality seems to require manually
programming it in to your application, where as a system like
erlang has this scalability built in to the system.

3.9 Memcaches
Memcache systems are used to reduce the stress on hard disks
and speed up access frequently used data. They are usually

implemented as clusters of servers with a lot of main memory.
These servers act as a simple key/store database stored
completely in main memory to speed up access. This storage
space may be used to temporarily store data retrieved from the
hard disk databases so that they may be accessed faster if that
data is cached. There are several different implementations of
memcaches. Many of them have APIs available for many of the
back end server side languages. These memcaches are meant to
be used in conjunction with a normal server software and
languages that are listed above.[13]

3.10 Agents
Mobile Agents are running programs that are able to migrate
from one host to another. An agent framework is built on top of
a runtime instruction framework such as the Java Virtual
Machine or the Common Runtime Language. Each node must
have the instruction framework in order to be able to receive a
migrating program. These agents are stored on the host, and the
host has infrastructure to execute instructions of the agent. Each
executing agent stores a set of instructions, an execution state,
and a program state. Each executed instruction alters this state
so that the agent state may be transmitted to other devices.
Agents have become more used with the increase of mobile
devices. It is easier to insure mobile device nodes have the right
software to run agents. They are also useful since mobile
devices don't have a lot of resources, agents can migrate to the
nearest server node and run much faster. They can also jump
back to the device when problems arise with connectivity.

4. CONNECTIONS
With large numbers of computers hooked up to the internet, they
need a way to identify and communicate with each other. One
of the original methods for communicating between computers
were telephone lines. Computers would make a direct
connections via telephone numbers with each other and send
packets over the lines. After the internet became more
predominant, companies started offering dedicated services to
connect directly to the internet with high speed connections.

4.1 UDP
The User Datagram Protocol (UDP) is one of the lightest weight
protocols used to communicate between computers hooked up to
the internet. The only fields added to data packets is an IP
source and destination addresses and port numbers. There is no
hand shaking process to create a connection and there is no
guarantee that the packets will get to their destination. This is
why UDP is referred to as a connectionless and stateless
protocol. Just wrap up some data and send it off.

4.2 TCP/IP
Since it would be useful to know whether data has arrived at its
destination, the Transmission Control Protocol is used to create
a connection between two devices. This connection retains a
state, for example if the connection times out or is verified as
being established. This protocol is built on top of UDP and uses
it to send acknowledgements of packet reception between one
another so both devices know what data has been transferred and
what data has not. Most computer networks are configured to
receive only HTTP packets on a single port (port 80) and all
other packets are blocked by firewalls and security. This fact
makes UDP and TCP difficult to write applications for that are
stuck behind firewalls. There are many frameworks written in

many different languages that use various clients like Flash,
Silverlight and Java to communicate via TCP/IP and even UDP.
However all of these frameworks suffer from firewall issues.

4.3 HTTP
The Hypertext Transfer Protocol is the main protocol used by
the World Wide Web to send web page information. This
protocol involves both a client and server and is also a stateless
protocol. The protocol consists of a request from a client, and a
response from the server requested from. This means there is no
way to allow the server to initiate a push of information out to
the client. Originally this protocol was used in research and
academia to transfer documents, but with the invention of server
side scripting and client side JavaScripting technology, HTTP is
now often used as the main transfer protocol of web
applications. The two major limitations of the HTTP protocol
are the inability to push information out to clients and its
stateless nature. In order to get around these two limitations,
whole technologies have been developed to work around them.
Internet cookies were created to let the client store state that
would be sent to servers and server side scripting with databases
allow the server to actually store state. The most common way
to simulate a server push is to simply make the client request
updates continually while viewing a web page or application.
This method can spam the server with messages from clients
that are simply checking to see if there is any new information
for them.

4.4 Web Sockets
Web Sockets are an up and coming HTML5 feature to have a
more traditional full-duplex connection across the internet.
Connections are initiated though traditional HTTP protocols, but
are then are upgraded to connections that very similar to TCP/IP
connections. These connections will use port 80 just as HTTP,
this will also allow full-duplex communications behind
firewalls. These types of connections will require servers that
keep track of all of these connections. One benefit of HTTP is
that the servers don't keep track of client connections, they just
process requests as they receive them. However most servers
allow session variables so the servers are already keeping track
of clients, this will simply be a more direct way to keep track
and allow the server to push information out to the clients
without having to wait for the clients update request.

4.5 Wireless Formats
Now virtually all mobile devices have some form of internet
access. This internet access must take place over wireless air
waves which is not as reliable as wired internet access. This
mode of transit spawned its own protocols known as Wireless
Application Protocol (WAP). These protocols are stacked
similar to traditional internet protocols such as UDP and
TCP/IP. In fact many of the formats are simply wireless
versions of the wired protocols. Wireless Datagram Protocol
(WDP) works much like UDP, Wireless Transport Layer
Security (WTLS) is like Transport Layer Security, Wireless
Transaction Layer (WTP) is analogous to TCP/IP, and Wireless
Session Layer (WSP) is basically like HTTP. [14] The
infrastructure that sends out data to the mobile devices are
mobile network gateways that have wired access to the internet.
Usually these gateways will communicate with wired protocols
with the internet, then make necessary conversions to convert
packets from servers to wireless formats. These conversions
used to be more complicated when mobile networks were first

developed, but technologies like the i-mode architecture were
designed to have wireless protocols more closely correspond
with wired protocols so that developers weren't required to learn
new languages constantly. [15]

5. CLIENT SIDE
The client side of any web application is the most difficult to pin
down what technologies to use due to the variety of client
devices. As a developer, you don't have control over what
technologies the clients are using so you simply have to pick a
technology or set of technologies to target the largest client base
you can.

5.1 Java Applets
One of the main design goals for the Java programming
language was platform-independence, with the slogan "Write
Once, Run Anywhere." This was an extremely useful feature for
internet programming since it provided the developer the ability
to write a program for a single virtual platform and have it run
on any client that supports that virtual platform. The way Java
achieves this goal is by having Java programs compile down to a
byte code for a virtual machine. The byte code is then
interpreted and translated by machine code for the specific
platform it is running on. This means to have any Java program
run on a particular system, the only program that needs to be
written is the program that runs this virtual byte code. Java
applets are a version of this virtual platform that run on a web
browser plug in that supports the Java virtual environment.
These applets allowed developers to bypass the limitations of
simple HTML and JavaScript which were plentiful at the time
applets were invented. Java has a whole GUI library for
creating graphical user interfaces called Java Swing, which
applet writers could take advantage of to write more complex
user interfaces for web sites.

5.2 Google Web Toolkit
The Google Web Toolkit is a unique technology that
demonstrates how difficult it can be to create applications with
pure HTML and JavaScript. Google went though the trouble of
creating a compiler that takes Java code, and compiles it to
HTML, CSS and JavaScript. This allows developers create
applications in an environment more suited for writing
interactive applications, and developers do not need to learn any
HTML, CSS or JavaScript.

5.3 Flash
Adobe Flash player is very similar to Java applets. It is a plug
in that runs virtual machine byte code compiled from Adobes
own language called ActionScript. Adobe is a company that
focuses on graphics, so Flash was designed specifically for
animators and artists to create complex animations from a
simple Interactive Development Environment (IDE). Because
of how simple it is to create animations for Flash, it quickly
became the most widely used plug in for web browsers. It has
the highest install base of about 98% on all internet-enabled
desktops.[16] The flash platform is also being used for creating
applications on hand held devices with a version of the flash
platform called Air. It is very simple to write code that can be
used in both the web flash player and air applications. The
biggest drawback of the Flash player is for developers.
ActionScript is a fairly high level language without many
features for speeding up applications. The move from

ActionScript 2.0 to ActionScript 3.0 has addressed many issues
for developers, but still falls short of feeling like a language for
writing large scale applications.

5.4 Silverlight
Silverlight is basically Microsoft's answer to Adobe Flash
Player. The platform solves many of the same problems that
Flash responds to, such as platform-independence and an IDE
for animators to create rich animations. Silverlight is much
more advanced from the developers side as it uses the dot NET
framework and the Common Language Runtime (CLR) for its
byte code. The CLR decouples the assemblies of the programs
from the languages used to compile them from. This allows
developers a greater choice in which language they use to write
their programs. Unfortunately Silverlight doesn't have a very
large install base at the time of this writing. In fact Microsoft
has lessened its support for browser imbedded Silverlight
applications, and has turned the focus of Silverlight more
towards hand held devices similar to Flash Air. [17]

5.5 HTML5
The HyperText Markup Language (HTML) is a markup
language designed to allow for universities and research labs to
share documents on the internet. As the internet became more
accessible, more people started using HTML for business related
purposes. As it became more widely used, the browser company
Netscape introduced a client-side scripting language JavaScript
for their HTML browser.[18] This allowed web pages to become
more like interactive applications rather than static pages to be
viewed. When web application designers started writing large
scale applications for browsers, it became apparent that HTML
with JavaScript had strong limitations with respect to
connectivity, user interfaces and dynamic HTML features.
Some of these limitations were addressed with libraries such as
JQuery and AJAX. However some of these libraries were only
emulating the functionality desired, for example AJAX emulates
server side pushes by constantly polling the server for any new
data. For some of the limitations developers are using plug ins
simply to get around a small limitation rather than what the plug
in was originally intended to do. With current HTML standards,
you can't perform an operation of uploading multiple files to a
server with a single operation. Developers will use a flash
movie that is a single pixel large and simply use the features of
ActionScript to achieve this effect since there is no way to write
a JavaScript library to do this. HTML5 is the latest standard for
the HTML specification and servers to address many of these
limitations. The new WebSockets in the HTML5 specification
allow clients can keep connections open to server that can push
data out to them. The specification also introduces new user
interface elements such as the drag-and-drop feature, which also
had to be emulated in previous standards. Currently it is
debated whether HTML5 will take the place of all of the current
browser plug ins since with the new HTML5 specification, you
will be able to accomplish most things that plug ins are capable
of doing. The biggest drawback of HTML5 is that the
specifications are taking a very long time to complete and be
implemented into current browsers. This is also an issue with
respect to the built in user interface elements for HTML5. For
example mobile devices have a completely different interface
than what HTML5 was originally targeting. Touch events are in
the queue to become part of the standard, but perhaps by then
we will have a new technology that tracks motion in 3d space
rather than having to touch a screen. [19]

5.6 Unity3d
Unity3d is a platform designed specifically for games. The
power of Unity is that it is not only a browser plug in, but has
run time implementations for Windows, Linux, Mac, Android,
iOS and nearly every operating system. This means it is very
simple to make an application and have it function on many
devices without having to change much code at all. Because it
must be installed on operating systems, it has direct access to
the hardware to allow for high performance 3d animation. Unity
also uses the dot NET CLR as the virtual machine for code
portability.

5.7 iOS
Since many people own an iPhone, developers tend to target iOS
for their applications. These applications tend to run faster
since they are designed to work with the native operating
system, but these applications will also only work for specific
Apple devices. Apple allows developers to code in C, C++ or
objective C. This operating system considered very "locked-
down", developers have little control over many aspects of their
software. If developers want their software to appear in the
Apple store, it must go through a screening process that doesn't
always inform developers why it was rejected. Apple also has
the ability to tamper with your system by deleting applications
remotely if they please.

5.8 Android
Android is another common operating system that is installed on
many different devices from many different companies. The
primary language used to develop applications for this platform
is Java. There is a NDK development kit that allows one to
code in C++, but is rather difficult to use. The C++ must still be
called from Java code. Again, applications must be written
specifically for this platform, and not ported easily.

6. CLOUD ARCHITECTURES
In the past, if you wanted to run your own software on a set of
servers, you would have to set up your own physical network.
Now cloud infrastructures allow develops to install whatever
software needed to run a web application. Some of the big
names for these cloud infrastructures are Amazon, Google App
Engine, Rackspace, and Microsoft's Azure. Most of the newer
infrastructures allow users to upload machine images rather than
rely on developers to use their chosen software set. Google App
Engine is an exception in this case.

6.1 Web Hosting
Originally the only function of web hosting was to allow users
to upload static HTML files that could be viewed on the
internet. As HTML generating scripts became more used,
companies started hosting servers that also had these HTML
generating frameworks installed so that web developers could
upload scripts. These servers would also have database software
installed for scripts to access. The most common configuration
for these hosting services is the LAMP platform. The LAMP
platform consists of Linux machines running Apache, MySQL
and PHP/Perl/Python. Some other types of web hosting offer
similar set ups, but with either JSP or ASP.NET as the scripting
platform. Technically you could create web applications with
nothing but this type of web hosting, but some of these
technologies aren't well suited for real time interactions in a
scalable way. If you need a unique type of database or server

technology it would be difficult to get the provider to add it to
the servers. These types of servers have been used for many
years however, so hosting is usually plentiful and cheap.

6.2 Amazon
The company Amazon has created one of the largest cloud
computing infrastructure for general use. The services consist
of the Amazon Simple Storage Service (Amazon S3), Amazon
Elastic Compute Cloud (Amazon EC2), and Amazon Simple
Database (Amazon SimpleDB). Amazon S3 is mostly used for
storing large quantities of data that doesn't need to have queries
run on them. Basically each chunk of data is given a hash value
that it can be accessed directly with. It is up to the application
to traverse this large data set. The Amazon SimpleDB is used to
store data that can be queried, but is optimized as a non-
relational database for faster access. The Amazon EC2 allows
users to upload any type of software to virtualized computers
running on the Amazon cloud. This allows users to set up
networks of any type without having to set up a physical
network at all. Basically these systems allow users to upload an
Amazon Machine Image (AMI), which contains a configuration
of software for a networked computer. Users may make their
own images, or use pre-configured images of common software
set ups. There are a variety of operating system that may be
configured for these machine images.

6.3 Google App Engine
Google Apps is a rather limited cloud infrastructure. There are
no machine images, you must use the server software provided
by Google. This software includes Java, Python and Php. One
of the most appealing features of Google App Engine, despite
the limitation of software, is that it is free to get started, use and
test. You are only charged when people actually start using
your application. This is in heavy contrast to Microsoft, where
there are horror stories of an idle "hello world" application
costing thousands of dollars to run. This makes this
infrastructure very appealing to get started with web application
development.

7. LANGUAGES
There are a wide variety of languages that are used in web
development. Many times a web application must cut across
many languages to get the job done. Here I have illustrated a
few ways how web applications could be developed in a more
language homogenous way, which could lead to a smoother
development process.

7.1 Java
The Java Virtual Machine was one of the first most successful
virtual machines created and is now widely used. Any client
with the Java runtime installed is capable of executing Java
binaries. There is also the server side Java technology called
Java Server Pages. When using transfer technologies such as
SOAP calls, having the same language on either side allows for
a more natural mapping of the proxy Java object on the client to
the actual Java object on the server, or vice versa. Java also has
a library to bridge the gap between the Java programming
language and database systems. This library is called Java
Database Objects (JDO). This technology is used to abstract the
database access out of the Java program itself. Instead of
conducting something like an SQL query right from the Java
language, queries are performed though abstract Java objects
that know how to perform those queries on a variety of different

databases. This means you can write your server Java program
once, and change the back end database without changing a line
of code. This library also serves to solve the object-relational
impedance mismatch problem by mapping relational databases,
or whatever kind of database being used, to an object model for
the Java language to consume. Many web browsers have a Java
applet plug in for client side Java runtime execution. This
means you could conceivably write an entire web application in
Java, without any knowledge of how to use any other language,
using these technologies together.

7.2 ActionScript
ActionScript is a language designed specifically for Adobe's
multimedia product Flash Player. It is one of the most used
browser plug ins out there and has implementations for various
mobile devices. It has become a very popular client side
technology. After Adobe bought ColdFusion, they added server
side scripting via ActionScript. There is also a technology
called Flash Media Server that flash clients may connect to with
a UDP or TCP/IP connection that uses ActionScript for
scripting. Since now the client and server can be implemented
in ActionScript, Adobe also created a special message format
called Action Message Format (AMF). This is a binary format
used to serialize ActionScript objects that can be packed up and
sent to the server or client, and used at the new destination.
This binary format is leaner than regular XML and gives a
performance boost to these client-server applications. There
doesn't seem to be a database to object layer ActionScript
library, but one could conceivably write a database to object
layer. ActionScript does have some libraries for connecting to a
relational database and some drivers have been made for
ActionScript to connect to some of the less traditional types of
databases. Using these various libraries as implementations,
one could write an abstract class for converting database entities
to ActionScript objects. So using this strategy, one could write
an entire web application in pure ActionScript. The client
would use Flash Player with ActionScript and use AMF to send
messages to a ColdFusion server also running ActionScript.
Using an abstract library for database connections, ActionScript
objects could be used to communicate with various databases
without the need to use any query languages.

7.3 CLR Compatible Languages
In my opinion, the dot NET framework is one of the most
sophisticated pieces of technology used for bridging the gap
between operating systems and languages. The core of this
framework is a virtual machine that runs Common Language
Runtime (CLR) byte code. Unlike the Java Virtual Machine,
this byte code is not specific to any language. This byte code
was designed to allow common object layouts between
languages, so these objects could be passed from one language
to another seamlessly. There are many languages that have
compilers that compile to this byte code. These languages
include C++, C#, Visual Basic, Scala, and even COBOL. Many
of these languages needed some modifications to be compatible
with the common object system. It is even possible to write
your own language to be compiled to the CLR. C# is the
language created to specifically work with the CLR byte code,
and the most widely used. Microsoft's ASP.NET is the web
framework for creating dynamic content using a CLR
compatible language. This framework has access to a database
to object layer called ADO.NET, similar to Java's JDO.
Microsoft also created a client side framework, Silverlight, that

takes advantage of this virtual machine. It is very similar to
flash player, but does not have quite as big of install base.
Netflix uses Silverlight to stream movies to users across the
globe. Using these technologies together, one could create an
entire web application with a single language compatible with
the CLR.

7.4 JavaScript
JavaScript can also be used to create an entire web application
with the new HTML5 standards. With HTML5, browsers will
natively be able to run JavaScript code. This client side code
can communicate with server side code written in JavaScript
with the Node.js platform. I was not able to find any database to
object layer for Node.js, but there are many JavaScript libraries
that bind to several different types of databases.

7.5 C++
There is a trend among different technologies to use a project
called Low Level Virtual Machine (LLVM) to compile C++ to
many different targets. Optimized C++ compilers already exist
to compile to this LLVM byte code, and it is not a large step to
convert this LLVM byte code to byte code for another virtual or
physical machine. Adobe Alchemy uses LLVM byte code that
is converted into the flash virtual machine byte code to allow C+
+ code to run in the flash player. This technology has mostly
been experimental, but recently Adobe has decided to officially
support this technology. Both iOS and Android use LLVM
compilers to compile C/C++ code. Google is experimenting
with Native Client (NaCl), a technology that allows C++
compiled code run right in the browser, only Chrome supports
this at the moment.

7.6 HAXE
HAXE is a very interesting piece of technology. It was
specifically designed to reduce the number of languages needed
to create web applications and has a specific focus on games.
HAXE is its own language that compiles to many different
targets. These targets include the ActionScript Virtual Machine
1 and 2, PHP, ActionScript, JavaScript, C++, Java, Neko (a
virtual machine used for server side web applications) and C#.
This cuts across pretty much every platform that the client or
server could be running on. This approach focuses on a
common way to express various design patterns and converts
those patterns to existing frameworks, rather than attempting to
create a new framework that would need to be implemented on
every platform before the power of having a single common
language could be realized.

8. CASE STUDY
This section will be a case study of a web application designed
and implemented by me to get a better understanding of what
technologies would be necessary to realize such a project. The
main goal for this project was to create a real time collaborative
visual editor. This program would be similar to Microsoft Visio
in interface, but collaborative like Google docs. Google docs,
which is now called Google Drive, has a drawings interface for
collaborative drawings. My primary focus for this project was
to learn the back end aspect of web applications, so the interface
for this software is rather limited. Since there is a plethora of
technologies available to implement this application, it was
designed with modularity in mind. This web application is more
of a collaborative white board where people can move
predefined objects around in any configuration. This application

allows users to log in to the system, join and create sessions, and
interact with objects inside of a session. Users create sessions
based on XML documents that define a set of objects that can be
moved around freely by the users. The current implementation
is well suited for table top gaming, but with some added
functionality like creating new objects on the fly, could be used
for any number of purposes. For instance it could be used for
story boarding an animation or web site, or designing a diagram
like an entity relationship diagram or flow chart.

8.1 Database
This web application uses a mySQL database to store its
persistent data. It stores all of the user information and
collaborative session information. Sessions are stored as a
series of events that must be replayed any time a user logs into
the session. This could be considered a thick client since the
server really does a minimal amount of work for this
application. The servers main function is to keep track of users
and session operations. The database itself is operating as an
message queue and using its locking function as an internet wide
semaphore so that there is a consistent ordering of operations
among all of the clients. So if one user picks up an object
before another user, that operation must bounce off the server to
make sure another user hasn't already picked it up. Images and
XML files used by the application are stored on the server's file
system and accessed via a URL. Originally this application was
designed to be uploaded to the Amazon Cloud services. In that
case, the images and xml files would be uploaded to the
Amazon S3 storage system. Data stored in this data storage
system can be accessed also by URLs, so altering the application
to work with files on the Amazon S3 would be trivial. There
would also be the option to use a different database to store
session information. The Amazon Simple Database is a non-
SQL database that may be faster for accessing streams of
commands for users. For my server code, I wrote a very thin
custom database to object layer that would make it easier to
switch out the SQL database for the Amazon Simple Database.
Another option would be to upload an SQL server to the
Amazon EC2 service. This would allow the application to be
uploaded to the Amazon Cloud services without much
modification at all. Since the start of this project Amazon has
added more support for traditional SQL databases to work with
their services. The current implementation of this application is
running on LAMP hosting servers.

8.2 Server Side
The server side of this application is running Apache with Php.
The main function of the Php code is to take incoming
commands from users, store them in the database, and send it
back with a time stamp and ordering id with any other
commands from other users sent in that time period. A second
function of this Php code is to handle the real time motion of
users' pointers. These pointer positions are stored in a very
small database that does nothing more than store session data.
The client constantly pings the server for the positions of all
user pointers in a session every thirty seconds. This requires
hard disk accesses from every script run from every user pinging
the server. This is probably the least effective aspect of this
application, but simplified the number of technologies necessary
to write this application. A better solution would be to use
server technologies suited for real time interactions. It would be
better to store this data in the server ram since it is accessed so
often, so a server technology that allows for persistent ram

memory is in order. One of the most popular technologies for
large scale real time message queues is the use of an Erlang
cluster. Erlang is used in Facebook's real time messaging,
Mochi ads for serving out large numbers of ads to flash games,
and some in game messaging for web games. Erlang's built in
database could also be used to store incoming commands in
RAM before they are sent out to a more robust SQL database for
long term storage. There is a content management framework
written in Erlang that also uses SQL databases, but it also uses
Erlang to cache data accessed frequently to speed up page
accesses rather than having to hit the database every single time
a user requests a page. This method offers high speed dynamic
and interactive web pages.[21]

8.3 Connections
The only connection model used in this project are RESTful
HTTP requests. The real time component of this project would
most likely benefit from UDP or TCP/IP connections, but would
create problems with firewalls. This would ideally be
implemented with the new WebSocket protocol with HTML5. I
did not have time to implement more complicated protocols
with mobile devices. Current mobile formats, however, have
been designed to work more closely with traditional protocols.
iPhones are able to connect to traditional HTTP driven web
pages from either wireless or cellular data connections, so the
technology to access this application though either one does
exist and most likely can be abstracted out of the application
itself.

8.4 Transfer Format
The primary transfer format used in this project is a text based
JavaScript Object Notation (JSON). Facebook uses JSON for
Facebook application integration. It is one of the simplest
formats to work with and implemented in nearly every language
and platform. In this case it was used to create a very simplified
version of the SOAP protocol. Every JSON object sent to the
server represents a function call with parameters, and the server
echoes back a return value as a JSON object back to the client.
Most implementations, including the two used with ActionScript
and Php, uses an interface of literally two functions. Encode
object to a text string to represent a JSON object and decode a
text string into a useable programming object. Using XML for
this project would have required very different implementations
on the client and server. In fact, the objects in both ActionScript
and Php have nearly the same syntax for accessing elements.
The server side of this project was actually written first as an
ActionScript class that pretended to be a server, and I was able
to copy and paste that code into Php with a few minor
adjustments. This allowed me to debug the client and server
without having to jump around to different languages when bugs
were found. Once the logic was down and debugged, I simply
transferred the emulated server in ActionScript to Php.

8.5 Client Side
The client side of this application runs from a flash window in a
HTML page viewed from any browser that supports flash
player. There are many mobile devices that have a browser that
supports traditional web viewing and flash player. Most mobile
devices have a built in mapping from touch events to mouse
events. This application utilizes this built in functionality to
operate from a mobile device. The application was written with
mouse events, including the use of the mouse wheel. A slider
had to be added to the GUI to allow a mobile user to perform the

operation that was originally done with the mouse wheel. This
user interface was built with Flex, which is a GUI framework
written for flash. It should be noted that since the start of this
project, Adobe has discontinued work on a flash browser plug in
for mobile devices and focuses more on Adobe Air, which is a
native version of flash to run on mobile devices. This project
could be ported to Adobe AIR without changing too much code,
but there are some subtle nuances to the flash renderer that must
be taken into account that may yield unexpected results.

9. FUTURE OF WEB
TECHONOLOGIES
There are many technologies breaking surface on the web,
technologies for server side and client side operations. Recently
a few operating systems have been developed that are
specifically designed to run on cloud infrastructures. Among
these are Oracle Solaris 11, CloudLinux and Windows 8.
Amazon already has preset AMI's of some of these operating
systems that have new features geared towards operation in the
cloud.

9.1 Browser as Operating System
A current trend in browser technology is treating the browser as
a client operating system itself. Chrome was specifically
designed with this functionality in mind. There are client
devices called chrome books that use ChromeOS as their native
operating system. These ChromeOS systems operate nearly the
same as Chrome the web browser, as if they were the same
platform. You might think of Chrome as a virtual operating
system running on Windows, MacOSX or Linux, but running a
non-virtualized version on the chrome book. This allows web
developers to develop sites for Chrome the platform and have
the site behave as expected regardless where Chrome is running
from. Firefox followed suit and created Firefox OS that may be
natively installed on many client devices. Both of these
platforms are based on the World Wide Web Consortium (W3C)
open standards, and rely on HTML5 for web application
development.

9.2 Future of Computer Languages
To understand the direction computer languages are headed, it
can be beneficial to analyze the problems that all of these
technologies are attempting to solve. Most modern electronic
devices have a very similar layout. They are simply a CPU
connected to a bus connected to various types of hardware.
Unfortunately, all of these devices have different CPUs, and
different versions of very similar hardware. They also have
some sort of operating system that drives the interactions
between the CPU and hardware. This prevents native
applications from running on a variety of devices. So all of
these technologies create a virtualization layer by using a virtual
machine to interface with different CPUs, and common
interfaces for interfacing with similar types of hardware. Each
technology platform acts as a virtual operating system for the
CPU and hardware. For example, Adobe Flash uses the
ActionScript Virtual Machine to interface with various types of
CPUs. It also uses the Display List to generate animations using
a common interface across many types of video hardware. One
somewhat recent addition to Flash is the stage3d framework.
This framework is designed to interface to several different
types of graphics cards for displaying 3d scenes in a flash
window. It allows the use of shaders for rendering 3d scenes.

This technology essentially uses a virtual graphics card machine
that understands the Adobe Graphics Assembly Language
(AGAL) as a common byte code for GPU shaders. This byte
code is then converted to the native graphics card assembly
language of the device. Java applets, Silverlight, and HTML5
all have their own virtual machines and interfaces to various
types of hardware and the low level operations of these
frameworks needs to be reimplemented for each system they
will interface with. This fact raises many compatibility issues
based on which frameworks are chosen to be supported and in
some cases intentionally block from being implemented (Apple
initially rejecting Flash). A better solution to this problem
would be to lessen the tight coupling between the high level
interfaces the various frameworks offer from the low level
implementation of these frameworks. This would create an
extra layer between the low level and high level operations of
these frameworks. My proposal would be to create a set of low
level standards for interfacing and managing different types of
hardware. You might think of this layer as a standard low level
virtual operating system that uses a low level virtual machine
that can make calls to low level virtual device drivers to
interface with various types of hardware.

Figure 2 every edge represents a low level implementation of
these technologies that must be implemented

Figure 3 with a low level layer, less development takes place

In the olden days of computing, C++ used a nice philosophy of
"don't pay for what you don't use" to offer developers peak
performance out of their applications. Currently we are now
creating applications on much smaller devices with less
computing power, so this philosophy would be well suited in
that area. Leaner versions of the Java framework for phones
have been developed for this reason. Most developers are not
happy with having to interface with so many different
frameworks, so the current trend is to hope that HTML5
becomes an applications standard that will run on any device.
There are also many developers that don't see HTML5 as a
viable solution, and I believe this is due to the high level nature

of the framework. This causes many more decisions that need
to be made about the standard, how to insure security and
portability at a low level, and all details about markup
languages, programming languages and interfaces to input and
output devices. A major complaint about HTML5 is how long it
takes for the standards to be decided on, and due to this
duration, some of the standards can become obsolete before they
even make it into the industry.

Figure 4 status of various HTML5 features[19]

I believe this problem can be solved with a standardized low
level framework that can run across all machines. This way
standardization committees could focus on the bare minimum
needed to achieve a secure cross platform framework. For a
web application framework, the two absolutely necessary
properties required are cross platform code and security against
malicious code. Using just in time compilation of some sort of
universal low level byte code, the cross platform aspect could be
achieved with efficiently matching that of natively compiled
code. This framework would not have to replace HTML5, in
fact HTML5 mark up languages and programming languages
could be built on top of this framework at another layer. Google
has already taken a step in this direction with Native Client.
Native client uses the LLVM byte code as a universal byte code
transfer format, and this byte code interfaces with HTML5
interfaces that act as virtual device drivers. In HTML5,
JavaScript is acting as some sort of high level universal byte
code. A lot of effort is going into speeding up JavaScript, but
Google seems to think that a low level byte code is more suited
for maximum efficiently. Another similar trend is using Flash
with a C++ compiler to generate more efficient Flash Virtual
Machine byte code. A new technology originally called
Alchemy and now officially called FlasCC uses the LLVM
compiler, and converts LLVM byte code to Flash VM byte code.
If this type of low level framework was adopted, developers
would have more freedom to innovate since they could drop
down to a lower level when needed instead of having to wait for
HTML5 standards to catch up to technology. For example,
HTML5 contains standards for responding to touch events, but
new methods of input using motion detectors are already being
developed. Google Glass already is using gesture events, so will
HTML5 will need to add some gesture support if HTML5 apps
can be operated with Google Glass. JavaScript may also be a
limiting technology for future processors. GPU processors are
now being used for general computations rather than just
graphics, and PC's now have multiple processors. This may lead
to new programming languages that are geared towards multi-

threading and Single Instruction Multiple Data processing.
Functional languages have shown to be useful in high numbers
of processes working together (such as Erlang and Scala). There
is also a shift in software design coming from the Video Game
industry. This shift is taking design away from object
hierarchies, and using a system of components. It is also
shifting to Data-Oriented design, which works rather well with
components. Data Oriented design lends itself well to
threading. It also turns out that component design is handy for
mobile agents since inheritance would force the agents to send
more class information about base classes. [20] So what happens
to HTML5 when a new language geared towards concurrency
comes out? Will it have to be built into JavaScript, or will other
languages have to be converted to JavaScript? Emscripten is a
compiler that takes LLVM byte code compiled from C++ and
converts it to JavaScript. It is not very efficient with the
garbage collector running and weak typing. Currently a project
called asm.js is in the works to solve this problem with a low
level version of JavaScript. One of the first successful features
of the internet was the ability to share files across multiple
operating systems. This was achieved first with the American
Standard Code for Information Interchange character set
(ASCII) and later with a more robust Universal Character Set
Transformation Format (UTF). This meant files could be sent
over the wire since both machines have a UTF available to
them. It would be fairly convenient if a universal byte code
transfer format was created so that program files could also be
send across the wire, and all systems could know how to covert
that universal format to their own system. If there was such a
standard, it would be useful for server programming, database
stored procedures, and even mobile agents. This framework
could be completely backwards compatible with current
frameworks like dot NET, Java and HTML5 by building them
on top of this layer.

10. REFERENCES
[1] Tom Steiner. 2010. CIS556 Databases Class Lecture.

University of Michigan-Dearborn, Dearborn, MI.

[2] Dr. Andrew E. Wade, Ph.D. 2005. Hitting The Relational
Wall: An Objectivity, Inc. White Paper. Objectivity, Inc.,
San Jose, CA.

[3] Wikipedia. 2013. Erlang. Retrieved September 7, 2013
from
http://en.wikipedia.org/wiki/Erlang_(programming_languag
e)

[4] Chris Pressey, Ulf Wiger and Sean Hinde. Frequently
Asked Questions about Erlang. June 2013. Retrieved
September 7, 2013 from
http://www.erlang.org/faq/mnesia.html

[5] Wikipedia. 2013. CAP theorem. Retrieved September 7,
2013 from http://en.wikipedia.org/wiki/CAP_theorem

[6] J. Chris Anderson, Jan Lehnardt and Noah Slater. 2010.
CouchDB: The Definitive Guide. O’Reilly Media, Inc.,
Sebastopol, CA

[7] Amazon Web Services, Inc. Amazon SimpleDB. 2013.
Retrieved September 7, 2013 from
http://aws.amazon.com/simpledb/

[8] Ariel Pashtan. 2005. Mobile Web Services. Cambridge,
New York, NY. pg 66.

[9] Wikipedia. 2013. Common Gateway Interface (CGI).
Retrieved September 7, 2013 from
http://en.wikipedia.org/wiki/Common_Gateway_Interface

[10] Wikipedia. 2013. Cold Fusion. Retrieved September 7,
2013 from http://en.wikipedia.org/wiki/Cold_fusion

[11] Ejabbered. 2013. Retrieved September 7, 2013 from
http://www.ejabberd.im/

[12] GoPivotal, Inc. RabbitMQ. 2013. Retrieved September 7,
2013 from http://www.rabbitmq.com/which-erlang.html

[13] Wikipedia. 2013. Memcached. Retrieved September 7,
2013 from http://en.wikipedia.org/wiki/Memcached

[14] Reza B'far. 2005. Mobile Computing Principles.
Cambridge, New York, NY. pg 341.

[15] Ariel Pashtan. 2005. Mobile Web Services. Cambridge,
New York, NY. pg 32.

[16] Wikipedia. 2013. Adobe Flash Player. Retrieved
September 7, 2013 from
http://en.wikipedia.org/wiki/Adobe_Flash_Player

[17] Wikipedia. 2013. Silverlight. Retrieved September 7,
2013 from
http://en.wikipedia.org/wiki/Microsoft_Silverlight

[18] Wikipedia. 2013. JavaScript. Retrieved September 7, 2013
from http://en.wikipedia.org/wiki/JavaScript

[19] Sergey Mavrody. 2012. Sergey's HTML5 & CSS3 Quick
Reference: HTML5, CSS3 and APIs. Belisso.

[20] Reza B'far. 2005. Mobile Computing Principles.
Cambridge, New York, NY. pg 610.

[21] Zotonic. 2013. Retrieved September 7, 2013 from
http://zotonic.com/

[22] Silberschatz, Galvin, Gagne. 2009. Operating Systems
Concepts. John Wiley & Sons, Inc.

[23] Ramez Elmasri, Shamkant B. Navathe. 2011. Fundamentals
of Database Systems. Pearson.

[24] Joe Armstrong. 2007. Programming Erlang. Pragmatic
Bookshelf, Frisco TX, Raleigh, NC

[25] Ariel Pashtan. 2005. Mobile Web Services. Cambridge,
New York, NY.

[26] Reza B'far. 2005. Mobile Computing Principles.
Cambridge, New York, NY.

[27] David Sklar. 2004. Learning PHP 5. O'Reilly Media.

[28] Hans Bergsten. 2003. JavaServer Pages. O'Reilly Media.

[29] Matthew MacDonald. 2012. Beginning ASP.NET 4.5 in
C#. Apress.

[30] Cloves Carneiro Jr., Rida Al Barazi. 2010. Beginning
Rails 3. Apress.

[31] James F. Kurose, Keith W. Ross. 2012. Computer
Networking A Top-Down Approach. Pearson.

[32] Vanessa Wang. 2013. The Definitive Guide to HTML5
WebSocket. Apress.

[33] Oracle. 2013. Java Swing Tutorials. Retrieved September
7, 2013 from
http://docs.oracle.com/javase/tutorial/uiswing/

[34] Budi Kurniawan. 2011. Java 7: A Beginner's Tutorial.
BrainySoftware.

[35] Colin Moock. 2007. Essential ActionScript 3.0. Adobe
Dev Library.

[36] Matthew MacDonald. 2010. Pro Silverlight 4 in C#.
Apress.

[37] Unity Technologies. 2013. Unity3D. Retrieved September
7, 2013 from http://www.unity3d.com/

[38] Google Inc. 2013. Google Web Toolkit. Retrieved
September 7, 2013 from
https://developers.google.com/web-toolkit/

[39] Wikipedia. 2013. Java Applet. Retrieved September 7,
2013 from http://en.wikipedia.org/wiki/Java_applet

[40] Alan Donovan, Robert Muth, Brad Chen, David Sehr.
2010. PNaCl: Portable Native Client Executables. White
Paper. Chromium.

[41] Mark Murphy. 2009. Beginning Android 3. Apress.

[42] Cloud Linux Inc., 2013. Cloud Linux. Retrieved
September 7, 2013 from http://www.cloudlinux.com/

	1. INTRODUCTION
	2. DATABASES
	2.1 Operating System File System
	2.2 Relational Databases
	2.3 Object Oriented Databases
	2.4 Mnesia
	2.5 Other NoSQL Databases
	2.6 Moving Object Databases
	2.7 XML Databases

	3. SERVER SIDE
	3.1 C/C++
	3.2 PHP: Hypertext Preprocessor
	3.3 Java Server Pages
	3.4 ASP.NET Framework
	3.5 Ruby on Rails
	3.6 ColdFusion
	3.7 Erlang
	3.8 Node.js
	3.9 Memcaches
	3.10 Agents

	4. CONNECTIONS
	4.1 UDP
	4.2 TCP/IP
	4.3 HTTP
	4.4 Web Sockets
	4.5 Wireless Formats

	5. CLIENT SIDE
	5.1 Java Applets
	5.2 Google Web Toolkit
	5.3 Flash
	5.4 Silverlight
	5.5 HTML5
	5.6 Unity3d
	5.7 iOS
	5.8 Android

	6. CLOUD ARCHITECTURES
	6.1 Web Hosting
	6.2 Amazon
	6.3 Google App Engine

	7. LANGUAGES
	7.1 Java
	7.2 ActionScript
	7.3 CLR Compatible Languages
	7.4 JavaScript
	7.5 C++
	7.6 HAXE

	8. CASE STUDY
	8.1 Database
	8.2 Server Side
	8.3 Connections
	8.4 Transfer Format
	8.5 Client Side

	9. FUTURE OF WEB TECHONOLOGIES
	9.1 Browser as Operating System
	9.2 Future of Computer Languages

	10. REFERENCES

